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1. Introduction

DWDM technology is essential for parallel
transmission of loads of data across the globe.
Therefore, it is imperative to advance this technology in
its most optimal form. This DWDM system is modeled
by vector coupled nonlinear evolution equation (NLEE).
It typically stems from nonlinear Schrodinger’s equation
(NLSE). However, dispersive solitons stem from
Schrddinger-Hirota’s equation (SHE) that models the
dynamics of dispersive optical solitons in a polarization-
preserving fiber. This paper addresses DWDM system
for dispersive optical solitons by the aid of a couple of
integration techniques. DWDM system as well as other
NLEEs have been extensively studied in the past by the
aid of several integtaion tools that led to plentiful
interesting solutions including solitons and shock waves.
A few of them are the method of undetermined

coefficients, extended trial equation method, G /G -
expansion scheme and several others [1-11]. This paper
will employ a couple of such powerful tools to extract
dispersive solitons in such a system.

1.1. Mathematical Model of DWDM Systems

The dimensionless form of the governing equation
for DWDM systemis given by [1]
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where | <1 <N. The first term in (1) on left hand side is
the linear temporal evolution term, while a, represents the
coefficient of group velocity dispersion (GVD) and the
coefficient of bI is the spatio-temporal dispersion. Then, the

coefficient of y; is the third order dispersion. Also, C, is the

SPM while d,, gives XPM. Finally, & and 7, are from

nonlinear dispersions.

This paper will integrate (1) to retrieve its soliton
solutions by the application of Riccati-Bernoulli sub-ODE
(ordinary differential equation) method and modified
Kudryashov’s algorithm.

2. Mathematical analysis

In order to solve (1) for solitons, the following phase-
amplitude form of decomposition for the wave profile

q® (x,t) is carried out,
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g (1) =R(r)e" ™ @
where B (7) represents the shape of the pulse and

r=K(x-vt) ®
and the phase component is defined as

(I),(X,t)Z—K,X+a)|t+¢9, )

here | <I<N. Here P(X,t) represents the
amplitude portion of the soliton and from the phase
component, k, is the frequency of the soliton, ¢, is the

wave number of the soliton and finally 6?, is the phase

constant. Substituting (2) into (1) and decomposing into
real and imaginary parts lead to
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2.1. RICCATI - BERNOULI Sub — ODE method
The balancing effect leads to
P=FR )
Consequently, Egs. (5), (6) modify to
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Integrating Eqg. (9) with respectto 7, gives
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where integration constant is taken to zero, without any loss
of generality. In this section, the Riccati-Bernoulli sub-ODE
method [8, 9, 11] will be introduced in details to obtain
soliton solutions to Eq. (1). Suppose that the solution of Egs.
(8), (10) leads to Riccati-Bernoulli equation

(P) = AP*"+BP, +CP", (11)

where A,B,C, and M are constants to be determined
later.

Substituting Eq. (11) into Eq. (8), we get
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Setting m = 0, Eq. (12) is reduced to
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Setting each coefficient of P’(j =0,12,3) to zero,

we get
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Solving Eqgs. (14) - (17), we get
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Substituting Eq. (18) into Eq. (19), we get
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This relation (23) introduce the constraint:
bx #1. (24)

Substituting Eq. (11) into Eq. (9), we get
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Setting m =0, Eqg. (25) is reduced to
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Setting each coefficient of P,j(j =0,1,23) to zro,
we get
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Solving Egs. (27) - (30), we get
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A =0, (33)
C =0, (39)
B=0. (35)

Substituting Eq. (18) into Eq. (31), we get
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Equating the wave number from (19) and (31) gives
the constraint as
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When m=1, A#0, and B?—-4AC<0, the
solutions of Eq. (11) are [11]
1
_ B, V4AC-B® .
2A 2A
RP(r)= , (38)
()= {(1 m)\/4AC B2 s }
0
and
1
_ B yJ4AC-B? -
2A 2A
RP(r) = . (39
(D)= [(1 m)\/4AC B2 s }
0
When m=1, A=0, and —4AC >0, the
solutions of Eq. (11) are
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Case-A: When AC >0, we get exact solutions of Eq.
@,
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where @, is given by Eq. (23) or Eq. (36). Three constraint

conditions for the existence of these analytical solutions to
exist are given by Egs. (24), (32) and (37).

Case-B: When AC <0, we get exact solutions of Eq.
@,

C
¢ (x,t) = -, /—Ktanh
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and



42 Anjan Biswas, Mohammad Mirzazadeh, M ehmet Ekici, Houria Triki, Qin Zhou, Seithuti P. Moshokoa, Ali Saleh Alshomrani ...

C
q(x,t) =~ ,—Kcoth

C +K¢4 +ZN:(d|n +77|nK|)

I#n

2 2
VARG | K| x- PERIRE
1

, (45)

% ei{—KIXHuItJr@l }

which are dark and singular soliton solutions

respectively. Here, @, is given by Eq. (23) or Eg. (36).
Three constraint conditions for the existence of these
analytical solutions to exist are given by Egs. (24), (32)
and (37).

Fig. 1 shows the profile of a dark 1-soliton solution
for the parametrers

Fig. 1.

| =1, @, =0.0445, o, =0.7549, a, =0.2428,
a, =0.4424, b, =0.6878, b, = 0.3592, 7, =—0.5154,

¥, =—0.2779, ¢, =0.7363, ¢, = 0.3947, d,, = 0.6834,
d,, =0.4423, d,,, =0.7040, d,, = 0.0196, & = 0.3309,
£=0.4243, ,, =0.2703, 5, =0.8217, ,, =0.1971,
1, =0.4299, K =0.8085, x, =0.8878, x, = 0.3912,
vV =2.6520, A =—0.7551, C =0.1464

2.1.1. BACKLUND Transformation of RICATTI-
BERNOULLI equation

When g,,(7) and g,(2)(9,(2) = 9,(9, (7)) are

the solutions of Eq. (11), we get

dg,(z) _ dg,(z) dg,.(7)
dr dg,,(r) dr

_ 9.0 (pgring cgn),
- 35.0) (g7 oo, )
namely

dg, (2 @

AgZ " +Bg,+Cg" AgZl+Bg,,+Cg",’

Integrating above equation once with respect to 7 and
simplifying it, we get

_ —m 1-m
g.(c) = CK,+ AKz(gn—l(T))l — (48
BK, + AK, + AKl(gn—l (T))l

where K1 and K2 are arbitrary constants. Equation (48) is

a Backlund transformation of Eq. (11). If we get a solution
of Eg. (48), we can search for new infinite sequence of
solutions of Eq. (11) by using Eq. (48). Then an infinite
sequence of solutions of Eq. (1) is obtained.

Applying Eq. (48) to q}')(x,t)(j =1234), we can
get an infinite sequence of solutions of Eq. (1). By applying
Eq. (48) to q}"(x,t) for j=56,78 once, when
AC <0, we get new solutions of Eq. (1),

O (x1) = {—CKl - KZ\/—ACtanh}

AK, — K +/-ACtanh
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and
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where @, is given by Eq. (23) or Eq. (36). Three
constraint conditions for the existence of these analytical where @, is given by Eq. (23) or Eq. (36). Three constraint
solutions to exist are given by Egs. (24), (32) and (37). conditions for the existence of these analytical solutions to
] exist are given by Egs. (24), (32) and (37).
When AC >0, we get new solutions of Eg. (1), Fig. 2 shows the profile of a dark 1-soliton solution for
the parametrers
0 _ | -CK, +K,VACtan
q7 (X!t) -
AK, + K +/ACtan
I N ] 0.2
C +KG +Z(dln +77an|)+
I=n 0.15
2 2
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| =1, o, =0.0445, a, =0.7549, a, =0.2428,
L J a, =0.4424, b, =0.6878, b, =0.3592, y, =—-0.5154,

ei{—le+w|t+0| }

, (51) ¥, =—0.2779, ¢, = 0.7363, ¢, = 0.3947, d,, = 0.6834,
and d,, =0.4423, d,, =0.7040, d,,, = 0.0196, & =0.3309,
&=0.4243, 17, =0.2703, 1,, =0.8217, ,, =0.1971,
7, =0.4299, K =0.8085, x, =0.8878, «, =0.3912,
vV =2.6520, A =-0.7551, C =0.1464, K, =0.1999,
K, =0.4070.
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2.2. Modified KUDRYASHOV’S method

In this section, a new and effective version of
Kudryashov method is used to produce new exact
traveling wave solutions of the Eg. (1) in non-linear
optics. According to the modified Kudryashov method
[3, 4], Eg. (8) has the solution in the form

. |
R(r) =’ +¢"Q(r), (53
where Cé') and Cl(') are unknown constants and

1
1+dA”

Q) =

: (54)

satisfies an ODE as

Q'(r) = Q(z)(Q(r) —1)InA, (55)

where K and A are nonzero constants with A>0

and A=1.

By substituting Eg. (53) into Eq. (8) and equating
the coefficients of the same powers of Q(z), we will
find a non-linear algebraic systemas the following form:
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Now, upon solving the resulting system, we find
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This relation (62) introduce the constraint:
b #1. (63)

By substituting Eg. (53) into Eq. (10) and equating the
coefficients of the same powers of Q(z), we obtain a

system of nonlinear algebraic equations and by solving it,
we get

(64)
¢ =sKinA | )
él +Z77In
I=n
oy = WKCONAY + 2V(L-biki) - 20, — Ay + 67 o

2

Additionally, Eqgs. (64), (65) poses the restriction that is
given by

i (Sﬁ +277an <0 (67)

1#n

Equating the wave number from (62) and (66) gives the
constraint as
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This yields
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From Egs. (2) and (69), we get new exact solution
of Eq. (D),

KInA
2

—67,
N
gl + znln
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N
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2K 2(InA)2b,
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where @, is given by Eq. (62) or Eg. (66). Three

constraint conditions for the existence of these analytical
solutions to exist are given by Egs. (63), (67) and (68).

3. Conclusions

This paper retrieved dispersive dark and singular
optical soliton solutions to DWDM system that stems
from SHE. Two integration schemes were employed.
They are Riccati-Bernoulli sub-ODE approach and the
modified Kudryashov’s method. The constraint
conditions for the existence of such solitons are also

given. These two powerful techniques vyielded soliton
solution to a class of important NLEEs and thus the scheme
stands on a strong footing for future research activities.
Later, this scheme will be applied to other models that will
also retrieve soliton solutions in optical fibers, PCF,
metamaterials, couplers and other forms of optical devices.
The results are however awaited at the present time.
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